
APPCLASSIFIER: Automated App Inference on
Encrypted Traffic via Meta Data Analysis

Chong Xiang∗, Qingrong Chen∗, Minhui Xue†, and Haojin Zhu∗
∗Shanghai Jiao Tong University, Shanghai, China

†Macquarie University, Australia
Email: danco2015@sjtu.edu.cn, chenqingrong@sjtu.edu.cn, minhuixue@gmail.com, zhuhaojin@gmail.com

Abstract—As smart phones gradually become the dominant
network traffic generators, app traffic analysis methods have
gained great interests for network management and targeted
advertisement. Specifically, previous works have shown that
the scalability of app inference via traffic meta-data has the
edge over traditional payload based analysis. However, such
works mainly considered the ideal inference scenario where
only one app is running on the client’s device, without any
background traffic noise interfered. In this paper, we extend
the research to a more practical scenario, by assuming that
multiple apps simultaneously run on a smart phone in the noisy
background with complex traffic generated by the operating
system. To that end, we propose APPCLASSIFIER, an Android
app fingerprinting scheme for real-time app inference. We first
leverage the observed differences in packet size distributions
and traffic sequential behaviors to boost inference accuracy for
noise-free traffic analysis. We then propose novel heuristic based
methods to re-correct mislabeled traffic flows to realize real-time
traffic inference. As a result, APPCLASSIFIER achieves inference
accuracy of 82.3% for noise-free traffic analysis and reduces
error rate from 66.7% to 36.4% for real-time traffic inference.

I. INTRODUCTION

With the rapid development of the smart phone market,
applications (apps) are replacing traditional browsers as the
predominant network traffic generators. According to the latest
research, in 2018, 52.2 percent of all website traffic was
generated through mobile phones [1], up from 50.3 percent in
the previous year. The mobile traffic was contributed by more
than 2.8 million Android apps and 2.2 million Apple apps. The
explosive increase in app usage makes smart phones desirable
app fingerprinting targets for any individual or organization
that aims to identify the presence of targeted apps on users’
smart phones.

App fingerprinting is regarded as an important analysis
tool as obtaining data about the types and usage patterns
of apps running within a network is valuable. For example,
knowing most popular installed apps and their throughput and
latency requirements, network administrators can optimize the
network deployment to improve the quality of the experience
(QoE) of the users [2]. Furthermore, app usage information
which has a strong correlation with the user’s demographic
information can be used for user profiling and facilitating
market research and targeted advertisements for vendors [3].

Though the hosts of TCP/IP traffic on traditional personal
computer can be easily identified by IP addresses and port
numbers, app fingerprinting on smart phones is regarded as a

greater challenge. First, payload encryption protocols, such as
HTTPS which is widely adopted, make it less likely to identify
app traffic by simply inspecting the traffic payload. Second,
IP addresses based app fingerprinting may be frustrated by
the widely adoption of content distribution networks (CDNs)
and network address translations (NATs) which allow multiple
apps to send or receive data to (and from) the same IP address
or IP address range. Due to the above reasons, automated
fingerprinting and identification of Android apps based on the
network meta-data has been receiving increasing attention [2],
[4]. The information in meta-data is usually well-formatted,
thus making it feasible to automatically process and analysis
network traffic. This leads to a significant advantage over
traditional traffic analysis [5].

The existing meta-data based app fingerprinting ap-
proaches [2], [4] work well in an ideal setting, in which
network traces are generated by launching one single app
at a time. Collecting network traces in such ideal situation
allows the automatic feature extraction and supports various
supervised learning algorithms to achieve an accurate app
identification. However, in a real-world application setting,
the existing solutions may not work well when multiple
apps are triggered simultaneously and their pair-wise traffic
interferes. Considering the fact that the Android framework
also introduces background noises, this problem is becoming
even more challenging. Therefore, a novel app fingerprinting
scheme which can deal with noisy traffic is highly desirable
in a real-world setting.

In this study, we present APPCLASSIFIER, a novel app
fingerprinting scheme for real-time app inference. APPCLAS-
SIFIER is driven by the following two observations. First,
the traffic from different apps tends to have different dis-
tributions on meta data (e.g., packet sizes), which results
in the diversified statistical features. Second, different apps
tend to have very different goals in the use of online ser-
vices, which leads to the different sequential behaviors (or
click-streams). This further enhanced the dissimilarity of the
features of the different app network flows. Motivated by
these two observations, we first introduce a Random Forest
method [6] to learn the decision boundary among different
apps in statistical feature space. Then, we capture the different
sequential behaviors of various apps by introducing a novel
Markov based model. Finally, to minimize the impact of
background noises introduced by multiple apps, we propose a

novel heuristic based method to re-correct mislabeled flows,
which is inspired by the fact that the foreground traffic volume
is dominant during a certain time period. Our experimental
evaluation shows that APPCLASSIFIER is able to achieve
an accuracy of 82.3% for the noise-free traffic inference,
and reduce error rate from 66.7% to 36.4% in a real-world
practical setting where an user can use multiple apps during
a ten-minute time period.

In summary, our contributions are listed as follows:
• We extend our research to a more practical setting where

multiple apps simultaneously run on a smart phone in the
noisy background with complex traffic generated by the
operating system.

• By empirical observations, we identify the apps’ distin-
guishable statistical features and sequential behaviors.

• We propose APPCLASSIFIER, a three-phase app infer-
ence system, which
– Phase 1: Uses Random Forest to classify statistical

features.
– Phase 2: Incorporates a novel Markov Chain to model

sequential behaviors.
– Phase 3: Finally leverages novel heuristic methods

to identify and re-correct mislabeled traffic flows to
realize real-time app inference.

The remainder of this paper is organized as follows. We
first survey related work in Section II. In Section III, we
provide concrete examples about different app traffic patterns.
We then propose the problem statement and system overview
in Section IV. The details of system design are presented in
Section V and Section VI. Finally, we show experimental eval-
uation in Section VII and conclude the paper in Section VIII.

II. RELATED WORK

In this section, we review previous work related to traffic
meta-data analysis. Most research mainly utilizes the traffic
packet sizes to generate app fingerprints.

Korczyński et al. [7] developed a Markov chain model
to fingerprint application traffic flows conveyed in SSL/TLS
sessions. They took different protocol types in each session,
which are available in meta-data, as different states in Markov
model and use statistical methods to generate transition ma-
trices. With this model, they managed to distinguish most
traffic generated by 12 apps. Alan et al. [8] investigated
apps from their launchtime network traffic. By collecting the
first 64 packet sizes, they achieved an accuracy of 88% on
1,595 popular Android applications. Since launchtime traffic
accounts for only a small portion of application generated
traffic, this work suffers from its generality. A recent work [9]
used end-to-end deep learning framework to automatically
learn the traffic features. They collected millions of Tor
network traces and achieved 96% success rate for a closed
world of 100 websites.

The most similar work with ours is conducted by Taylor
et al. [2]. They divided network traffic into units of flows,
generated statistical features of packet sizes in each flow,

(a) Distinguishable distribution
difference between MobileTicket
and Paypal

(b) Indistinguishable distribution
difference between Dianping and
Meituan

Fig. 1: Packet size histograms for different apps

0.93

0.05 0.02

0.74 0.05

0.19

0.95 0.07

𝐼

𝑂

𝐸
𝑁
𝑇
𝐸
𝑅

𝐸
𝑋
𝐼𝑇

(a) Dianping

0.88

0.06 0.04

0.64 0.08

0.32

0.94 0.04

𝐼

𝑂

𝐸
𝑁
𝑇
𝐸
𝑅

𝐸
𝑋
𝐼𝑇

(b) Meituan

Fig. 2: Simple transition diagrams for Dianping and Meituan

and explored several machine learning classifiers to make
inference. Their further work [4] showed different devices, app
versions, and time periods will severely decrease inference
accuracy since app logic would change through different
devices, app versions and time periods.

Although works mentioned above are argued to have high
inference accuracy, they only tested their methods in the
ideal setting where no background traffic noise is considered.
Our work, however, mainly focuses on a real-time inference
scenario and tries to address traffic noise in the wild.

III. INFERRING APPS VIA CLICK STREAM TRAFFIC

In this section, we perform a simple traffic analysis on the
network traffic collected from two app pairs.
App Level Statistical Features. Figure 1a shows the
histograms for traffic packet sizes of two different
apps, com.MobileTicket (MobileTicket) and
com.paypal.android.p2pmobile (Paypal). We
can see noticeable differences between the two distributions.
Such a difference may result from differences in app
functions and communication logic. For example, traffic of
video apps is likely to be dominated by large size packets
due to its nature of sending great volumes of data, while
chat apps tend to have traffic packet of smaller sizes since
instant messages only require several bytes’ space. To exploit
the difference in statistical distributions, we generate the
statistical features like moments and percentiles, and take
them as the fingerprints for different apps.
Sequential Behavior based Features. Though noticeable dis-
tribution difference can be observed in Figure 1a, some apps
may have similar distributions as shown in Figure 1b. To better
distinguish between app pairs such as com.dianping.v1
(Dianping) and com.sankuai.meituan (Meituan), we

resort to different sequential behaviors of traffic flows. An app
may have many implicit running states representing different
logical functions. For example, current traffic packet directions
can tell whether an app is receiving data from others or
sending requests to servers. During running time, different
apps can transit from states to states with different sequential
manners due to different code logic and such difference can
serve as fingerprints for apps. We empirically calculate the
transition probability between two simple states (Incoming
and Outgoing) and plot transition diagrams in Figure 2 (details
about the diagrams are covered in Section V-C). As shown
in Figure 2, given current packet state, I (incoming) or
O (outgoing), the probabilistic distributions of direction of
next packet have noticeable difference between Dianping and
Meituan whose statistical distributions are quite similar. So
this observation motivates us to include sequential behavior
based features to boost inference performances.
Summary. As shown in Figure 1a, the network traffic of some
apps (such as MobileTicket and Paypal) shows a significant
difference in terms of their meta data (e.g., packet size
distributions). In this case, it is reasonable to leverage the
statistical features to generate the fingerprints for them. In
some cases, as shown in Figure 1b and Figure 2, some
apps (such as Dianping and Meituan) have similar statistical
distributions, which may make it less likely to classify the
apps just based on their app level statistic features. However,
it is observed that traffic sequential behaviors may be distinct
among these apps. Thus, we incorporate sequential features
with statistical features and propose a novel app fingerprinting
method.

IV. PROBLEM STATEMENT AND SYSTEM OVERVIEW

A. Problem Statement

We assume that we have access to a public Wi-Fi hotspot
with which the user is connected and we are only able to
passively eavesdrop the network-level traffic with meta-data,
such as IP addresses, host ports, and timestamps. We argue
that this assumption is reasonable because people tend to
use available public Wi-Fi due to their limited mobile traffic
budget. It should be noted that we cannot take the IP addresses
and ports as the fingerprints of the apps due to the prevalence
of CDNs and NATs which make IP addresses and ports
unreliable [2]. Overall, we can only use IP addresses and
ports to split traffic into units of flows and exploit meta-data
like timestamps, traffic direction, and network packet sizes to
generate fingerprints for different apps.

B. System Overview

As shown in Figure 3, our system mainly has four dif-
ferent components: traffic pre-processing, statistical features
generating, sequential behavior modeling and real-time traffic
re-correcting. We give a brief introduction in this section and
detail on approach design in Section V and Section VI
Traffic Pre-processing. To conduct inference, we first split
raw network traffic into finer units, which we call traffic flows.
A flow is a subset of traffic packets appearing within a certain

time threshold with the same IP addresses and network ports.
Our inference is mainly conducted with respect to flows.
Statistical Feature Generation. As shown in Section III,
we can exploit the difference in packet size distributions
to perform app fingerprinting. To achieve that, we calculate
statistical features of traffic distribution and use the Random
Forest machine learning algorithm [6] to learn the decision
boundary among different apps.
Sequential Behavior Modeling. Inspired by the observation
in Section III, we seek ways to model the different sequential
behaviors to generate app fingerprints. In our approach, we
choose the Markov Chain Model [10] to depict the traffic
sequence features. Also, we will incorporate the Markov
Chain with Random Forest Classifier to improve inference
performance.
Real-time Traffic Re-correcting. As we will show in Sec-
tion VI, directly deploying aforementioned methods to real-
time traffic will result in high error rates. Thus, we conduct
re-correcting before our system outputs its prediction. We
propose novel heuristic based rules to identify and re-correct
mislabeled traffic flows. Finally, we will output the app a user
is using in each second.

V. APP INFERENCE WITH NOISE-FREE TRAFFIC

In the next two sections, we provide details about our
system design. Traffic pre-processing and feature generation
are covered in this section and the next section mainly focuses
on real-time inference methods.

To perform real-time inference, we should first design a
system which yields good performance in noise-free traffic
inference. After traffic pre-processing, we first generate sta-
tistical features. Then we incorporate a novel Markov Chain
to model traffic sequential behaviors to improve inference
accuracy. Note that in this section, all the traffic is collected
in the setting where only one app is running at a time and no
traffic noise is introduced.

A. Traffic Pre-processing

To make inference on the app a user is using, we first filter
out network error packets (e.g., TCP retransmission packets)
and useless packets which do not carry any information
about the app (e.g., ACK frames). Then we split raw traffic
into bursts and flows as AppSanner [2] does. According to
AppScanner, a burst is a set of traffic which satisfies the
condition that the most recent packet occurs within a time
threshold and a flow is a subset of a burst whose packets share
the same destination IP addresses and port numbers. After
traffic pre-processing, we get traffic flows which are sequences
of packet sizes and timestamps. Note that our goal in noise-
free traffic inference is to label each flow to its corresponding
app.

B. Statistical Feature Generation

Since different apps tend to yield different distributions of
packets sizes, as shown in Section III, we can generate features
depicting different distributions. The most straightforward

Traffic Pre-processing

Statistical Feature
Generating

Sequential Behavior
Modeling

Real-time Traffic Re-
correctingRaw Traffic Traffic Flows App Fingerprints

Final Prediction

Feature Generation

Fig. 3: System overview

way is to calculate the statistical quantities of packet size
sequence as features. We adopt statistical features proposed by
AppScaner [2] as well as some related features which show
empirical benefits. Those features mainly include different
orders of moments and different percentiles. The top 35
statistical features and their corresponding importance scores
is provided in Table II (see Appendix).

After generating these features, we can feed them to a
machine learning model to learn the decision boundary of each
app. According to the existing researches [6], Random Forest
outperform other algorithms in [2], and thus we implement
a one-vs-all Random Forest model to perform multi-class
classification.

C. Sequential Behavior Modeling

As shown in Section III, apps with similar statistical fea-
tures may have a significant difference in sequential behaviors.
Thus, we take apps’ sequential behaviors into consideration
to improve system performance. There are many existing
methods to model a time sequence, such as HMM [10] and
RNN [11]. In our system, we choose to incorporate a first-
order homogeneous Markov Chain due to its simplicity and
effectiveness for capturing the sequential behavior of users on
apps.

Similar to [7], we use a discrete time variable Xt, which
takes values si ∈ {−M, . . . ,−1, 0, 1, . . . ,M}, to denote the
tth state of traffic sequence. Here, si refers to the size of
a packet and M denotes the possible maximum packet size.
The si with a positive value means the packet is sent by the
smartphone while a negative value means the packet is sent by
the sever. We assume the Markov Chain variable Xt is first-
order (1) and homogeneous (2). Formally, our assumption can
be formulated as equations followed:

P (Xt = st|Xt−1 = si−1,Xt−2 = st−2, . . . , X1 = s1)

= P (Xt = st|Xt−1 = si−1),
(1)

P (Xi = si|Xt−1 = st−1) = P (Xt = j|Xt−1 = i) = pi→j .
(2)

Considering that there may be too many possible states (i.e.,
packet sizes) in the aforementioned Markov model, which may
incur a great computation overhead. We reduce the number
of states by dividing the possible packet size domain into
intervals with the same length. In this case, we take the interval
a packet size belongs to as the state of that packet. Formally,
Xt takes values si ∈ {b−M/lc, . . . ,−1, 0, 1, . . . , bM/lc},
where l is a parameter denoting the length of each interval. In
our experiment, M and l are set to be 1600 and 5, respectively.

Besides normal states of packet sizes, we also include
two special states, ENTER (shorthand EN) and EXIT (short-
hand EX), to provide more information about the flows in
Markov Chain. The ENTER probability distribution represents
the probabilities that a flow starts at different packet sizes.
Similarly, the EXIT probability distribution represents the
probabilities a flow ends at different sizes. As shown in Fig 2,
each flow begins at ENTER state, transitions among different
packet size states and finally ends at EXIT state. Combining
the ENTER and EXIT probability distribution with the normal
transition matrix, we can generate all the probability needed
in our inference. Using these probabilities, we can calculate
the possibility of the occurrence of flow {X1, . . . , XT } using
Equation (3):

P ({X1, . . . , XT }) = qEN→s1×
T∏

t=2

pst−1→st×psT→EX . (3)

To generate the transition matrices for Markov Chain,
we use Maximum Likelihood Principle and calculate the
probability of all possible transitions observed in the training
dataset. Note that we have to pay attention to the possible
situations that some possible transitions may not be observed
in our training set, which lead to a zero transition probability.
To handle with this problem, we use Laplace smooth method
when calculating the empirical probability. Formally, we cal-
culate the transition matrix elements using the formula:

pi→j =
kijtimes + a

Ttotal + a · n
,

where kijtimes refers to the time a transition from state i to state j
observed in our training data, a is a self-chosen parameter as

the degree of smooth process, Ttotal refers the total number of
transition in the dataset and n refers to the number of possible
states. Note that i and j can also be the special states ENTER
and EXIT. In our experiment, we set a to be 0.1.

We generate one matrix for one specific app, and we will
get N different matrices after our training, where N is the
number of apps in the training set. After getting the transition
matrices, we can perform app inferences on the test data:
given an unlabeled flow, we calculate the probability of the
occurrence of this flow using N different transition matrices.
N probabilities will be obtained and we will pick out the
highest probability to label the flow as its corresponding app.

D. Combination of Statistical Features and Sequential Behav-
iors

As discussed in Section V-B and Section V-C, we can
take either statistical features or sequential behaviors as the
fingerprints for apps. Our observations also show that traffic
flows with similar statistical features may differ greatly in
sequential behaviors. Therefore, to make the fingerprint more
robust, we propose to combine these two types of traffic
features. We first calculate flows’ statistical features and
then use Markov Chain Model to calculate the probabilities
the flow belongs to N different apps. After that, we feed
statistical features as well as N probabilities to the Random
Forest classifier to train a model considering both statistical
features and sequential behaviors. We will demonstrate the
effectiveness of this method on app classification via extensive
experiments.

VI. REAL-TIME APP INFERENCE

In the previous section, we have presented the details of
the inference methods in the noise-free traffic setting. In this
section, we will discuss the difference between app inference
in an ideal setting where no noise is involved and a real-time
setting where background traffic is present and show how to
perform a real-time app inference using novel heuristic re-
correcting methods.

A. The Challenges in Real-time Traffic Inference

Unlike the previous works where all the traffic flows are
collected in the ideal setting where only one app is running
at a time and no noise is introduced, real-time inference has
to directly deal with the raw network traffic which contains
a lot of background noises. Though in most cases only one
app is running at the front, background apps and Android
framework can also generate noise traffic. To show how these
background noises interfere with app inference, we run a
simple experiment where a user randomly switches the apps
for every five minutes. A 250-minute experiment shows that
directly using state of art inference methods will label 49%
flows as apps which have never been used in the experiment.
Therefore, a new method is highly desirable for real-time app
inferences.

A BC A A B B

One second slot

Incorrect label

A BC A A B B

One second slot

Suspicious labels

A B B B BB B

One second slot

Re-corrected labels

Rule 1

Rule 2

Rule 3

Count A < Count B

Prediction for this second: App B

Confidence Confidence

Confidence

Fig. 4: An example of real-time traffic re-correcting. Firstly,
the confidence of Flow C is reduced to zero according to
Rule (i). Secondly, Flows A in the middle are regarded as
suspicious ones according to Rule (ii) and then both Flows A
and C are re-corrected as flow B. Lastly, the system output B
since B’s traffic volume is dominant in this time slot. Note that
without re-correcting rules, the system will fail to determine
the running app for this second.

B. Dealing with Background Traffic Noise

To overcome the challenges in real-time inferences, we
propose a novel heuristic scheme based on the flow re-
correcting rules to identify and re-correct mislabeled flows.

Our re-correcting rules mainly stem from the observations
that the background traffic volume is usually significantly
smaller than that generated by the front app and that users
are not likely to switch apps too frequently. From these
observations, we have the priors knowledge that, in most
cases, the current flow captured is likely to belong to the
same app as the previous flow and that the flows whose
labels appear frequently within a time period are likely to
be correctly labeled.

Before giving the details of our re-correcting methods, it
is important to point out that the aforementioned models will
return app labels and classification confidence as their outputs.
We will exploit the information provided by these outputs to
perform traffic re-correcting. Besides, since we assume the
user only uses one app at one time, we only output the app
that the user is using during each fixed-length time slot (each
second in our experiment). Also note that the traffic flows
have been sorted according to their time stamps before our
label re-correcting. Our re-correcting rules are demonstrated
in Figure 4 and detailed as followed:
(i) If no flow in a flow’s neighborhood is labeled with the same
app, we assume this flow is incorrectly labeled. Formally, if
the ith flow is labeled as app A, we examine the (i− k)

th

to the (i+ k)
th flows, where k is a self-chosen parameter, to

find out if any flows in this interval is labeled with app A. If
not, we assume that the ith is incorrectly labeled and reduce
its confidence into zero. We set k to be 6 for experiments.
(ii) If a flow is labeled with low confidence while one of
its neighbors is confidently labeled to a different app, we
assume the former flow is incorrectly labeled and should be
re-corrected to the high-confidence label. Formally, for any
two different flows fi and fj at the ith and jth position

respectively, if the following inequation (4) is satisfied, we
suppose the ith label is suspicious and replace the label of fi
with the label of fj .

Cj − Ci

|j − i|
> Tthre, (4)

where Ci and Cj refer to the classification confidence values
of the fi and fj and Tthre is a self-chosen parameter indicating
the degree of re-correcting (we choose 0.1 for experiments).
Note that in Rule (i), we already reduce the confidence values
of mislabeled flows to zero. Therefore, those mislabeled flows
identified by Rule (i) can also be re-corrected by Rule (ii).
(iii) We only output the label of apps whose traffic volume
is dominant within a specific time slot. Formally, In a time
slot of t seconds, we calculate the traffic volume for different
apps. We only retain flows labeled to the app with the largest
traffic volume and finally output the app label. We set t to
be 1 for experiments.

In our later evaluation, we will demonstrate that our filter
method can receive good results.

VII. EVALUATION

In this section, we implement all the methods proposed in
previous sections and perform a comprehensive evaluation on
our system performance.

A. Traffic Collection

We use a Google Nexus smartphone running on Android
6.0.1 as our experiment device. We randomly download 48
most popular apps from China Android market and 17 apps
from Google Play Store. The smartphone is connected with a
laptop hotspot so that we can capture all the network traffic
using Wireshark [12].

To gain good performance in the real-time inference, we
have to make sure that the training traffic flows are similar
with those in the real-time inference scenarios. Unfortunately,
our experiment finds that automated UI fuzzing tools such
as Monkey [13] cannot simulate human’s behavior because
their can only execute random operations. So we choose to
run apps manually instead. Though our system need manual
operation, we would argue that the scalability won’t be a
problem because each app requires only ten-minute operations
to generate enough training traffic. We believe such cost of
time is trivial compared with the potential benefits obtained by
meta-data analysis. Besides, we can also resort to on-demand
workforce marketplace like Amazon Mechanical Turk [14] to
obtain adequate traffic data.

B. Noise-free Traffic Inference

We first implement our system in an ideal setting where no
traffic noise is introduced to show the performance improve-
ment with our newly introduced methods. We run each apps
for ten minutes to generate enough traffic flows for inference.
63,258 flows from 65 apps are collected and randomly split
into training set and test set by a proportion of 8 to 2.
Experiment results for noise-free traffic inference are shown

in Figure 5a. As shown in Figure 5a, both statistical features
and sequential behaviors can serve as fingerprints for different
apps, achieving inference accuracy of 80.0% and 73.4%,
respectively. As expected, our combined method yields the
highest accuracy of 82.3%, which justify our attempt to
consider both distribution statistical features and sequential
behaviors. This improvement in the ideal setting will also help
implement real-time traffic inference.

C. Real-time Traffic Inference

To simulate real-time inference scenarios, we randomly
choose five different apps and switch among these apps during
running time. In the meanwhile, we also record the time of app
switching. We eavesdrop the network traffic to make inference
about which apps is being used in each second.

We perform 25 times real-time inference experiments, each
lasts for around 10 minutes, and use the re-correcting rules
detailed in Section VI to identify and re-correct mislabeled
flows. To evaluate the re-correcting performance, we calculate
the error rate for the app inference in each second. The results
of our system for different running times are shown in Table I.
Comparing the performance before and after re-correcting, we
can see our re-correcting rules work quite well and correct
more than half of the incorrect flows.

TABLE I: Real-time inference error rate under different
inference methods and running times

Running time
Inference method

Without re-correcting With re-correcting

4 minutes 63.9% 33.8%

6 minutes 63.8% 33.2%

8 minutes 64.5% 35.1%

10 minutes 64.6% 34.9%

To better understand how re-correcting rules works, we
visualize inference results with and without first two rules
of re-correcting in Figure 5b and Figure 5c respectively. The
figures demonstrate the cumulative flow packet sizes changes
in ten minutes and different curves represent flow changes of
different app labels. We only plot the curves for apps with top
10 total packet sizes in the figures. As shown in the figures,
inference result of our original system without re-correcting
is a little noisy and has many incorrect labels while after
applying re-correcting rules, few incorrectly labeled flow is
presented and we can clearly identify the app the user is using
during each second.

VIII. DISCUSSION AND CONCLUSION

One challenge we fail to overcome in this paper is the im-
pact of different devices as mentioned in [4]. The apps’ logic
changes over time and hinders inference accuracy. Potential
improvements also include implementing other methods, such
as reinforcement machine learning or second-order Markov
chain to gain an even higher accuracy. We would leave this
to the future avenue.

This paper attempts to explore the feasibility to perform
real-time inference on running apps via traffic meta-data in

(a) Experimental results of noise-free traffic
inference

(b) Real-time inference without re-correcting (c) Real-time inference with re-correcting

Fig. 5: Experimental results for APPCLASSIFIER

the wild. In doing so, we first explore different traffic patterns,
and then leverage both different statistical features and traffic
sequential behaviors to fingerprint different apps. Using newly
proposed methods, we boost app inference accuracy for noise-
free traffic analysis. Furthermore, we examine real-time app
inference where traffic from different apps and Android frame-
work can interfere. To address this, we also propose heuristic
based re-correcting rules to identify and re-correct mislabeled
flow caused by background traffic noise. Our experiment has
shown that the re-correcting rules perform well in real-time
scenarios.

ACKNOWLEDGMENT

This work is supported by National Natural Science Foun-
dation of China (No. 61672350, U1401253).

REFERENCES

[1] “Share of mobile phone website traffic worldwide,” https://www.statista.
com/statistics/241462/global-mobile-phone-website-traffic-share/,
2018.

[2] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic, “Appscanner:
Automatic fingerprinting of smartphone apps from encrypted network
traffic,” in 2016 IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE, 2016, pp. 439–454.

[3] E. Malmi and I. Weber, “You are what apps you use: Demographic
prediction based on user’s apps.” in ICWSM, 2016, pp. 635–638.

[4] V. F. Taylor, R. Spolaor, I. Martinovic et al., “Robust smartphone app
identification via encrypted network traffic analysis,” IEEE Transactions
on Information Forensics and Security, vol. 13, no. 1, pp. 63–78, Jan
2018.

[5] H. Li, H. Zhu, and D. Ma, “Demographic information inference through
meta-data analysis of wi-fi traffic,” IEEE Transactions on Mobile
Computing, vol. 17, no. 5, pp. 1033–1047, 2018.

[6] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[7] M. Korczyński and A. Duda, “Markov chain fingerprinting to classify
encrypted traffic,” in IEEE INFOCOM 2014 - IEEE Conference on
Computer Communications. IEEE, 2014, pp. 781–789.

[8] H. F. Alan and J. Kaur, “Can android applications be identified using
only tcp/ip headers of their launch time traffic?” in Proceedings of the
9th ACM Conference on Security & Privacy in Wireless and Mobile
Networks. ACM, 2016, pp. 61–66.

[9] V. Rimmer, D. Preuveneers, M. Juarez, T. Van Goethem, and W. Joosen,
“Automated website fingerprinting through deep learning,” in Pro-
ceedings of the Network and Distributed System Security Symposium
(NDSS), 2018.

[10] L. R. Rabiner, “A tutorial on hidden markov models and selected
applications in speech recognition,” Proceedings of the IEEE, vol. 77,
no. 2, pp. 257–286, 1989.

[11] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning.
MIT press Cambridge, 2016, vol. 1.

[12] “Wireshark,” https://www.wireshark.org/.
[13] “Ui/application exerciser monkey,” https://developer.android.com/

studio/test/monkey.html.
[14] “Amazon mechanical turk,” https://www.mturk.com/.

APPENDIX

TABLE II: Statistical features and importance scores

Rank Feature Score

1 Overall Maximum 0.041522
2 Outgoing Maximum 0.040859
3 Position in FlowFirst or not 0.038741
4 Outgoing 90% Percentile 0.035219
5 Outgoing 80% Percentile 0.030555
6 Outgoing 70% Percentile 0.030147
7 Outgoing 60% Percentile 0.030048
8 Outgoing Minimum 0.029528
9 Outgoing 50% Percentile 0.028771
10 Outgoing 10% Percentile 0.028614
11 Outgoing 20% Percentile 0.027693
12 Outgoing 30% Percentile 0.027122
13 Outgoing 40% Percentile 0.026321
14 Outgoing Mean 0.026216
15 Overall Minimum 0.022138
16 Incoming Maximum 0.021378
17 Incoming Minimum 0.020818
18 Incoming 10% Percentile 0.017286
19 Incoming 90% Percentile 0.014936
20 Incoming 20% Percentile 0.014398
21 Overall 10% Percentile 0.014271
22 Incoming Mean 0.013302
23 Outgoing Median Absolute Deviation 0.013164
24 Outgoing Standard Deviation 0.013092
25 Outgoing Variance 0.012890
26 Overall Standard Deviation 0.012879
27 Overall Variance 0.012520
28 Elapsed Time 0.012038
29 Incoming 30% Percentile 0.011949
30 Incoming 40% Percentile 0.011603
31 Incoming 80% Percentile 0.011387
32 Incoming Median Absolute Deviation 0.011111
33 Incoming Kurtosis 0.010954
34 Overall Mean 0.010916
35 Overall Median Absolute Deviation 0.010873

